2/(n^2+n)+3/(4n+4)

Simple and best practice solution for 2/(n^2+n)+3/(4n+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/(n^2+n)+3/(4n+4) equation:


D( n )

4*n+4 = 0

n^2+n = 0

4*n+4 = 0

4*n+4 = 0

4*n+4 = 0 // - 4

4*n = -4 // : 4

n = -4/4

n = -1

n^2+n = 0

n^2+n = 0

n^2+n = 0

DELTA = 1^2-(0*1*4)

DELTA = 1

DELTA > 0

n = (1^(1/2)-1)/(1*2) or n = (-1^(1/2)-1)/(1*2)

n = 0 or n = -1

n in (-oo:-1) U (-1:0) U (0:+oo)

2/(n^2+n)+3/(4*n+4) = 0

n^2+n = 0

n^2+n = 0

n*(n+1) = 0

n+1 = 0 // - 1

n = -1

n*(n+1) = 0

2/(n*(n+1))+3/(4*n+4) = 0

(2*(4*n+4))/(n*(n+1)*(4*n+4))+(3*n*(n+1))/(n*(n+1)*(4*n+4)) = 0

2*(4*n+4)+3*n*(n+1) = 0

3*n^2+11*n+8 = 0

3*n^2+11*n+8 = 0

3*n^2+11*n+8 = 0

DELTA = 11^2-(3*4*8)

DELTA = 25

DELTA > 0

n = (25^(1/2)-11)/(2*3) or n = (-25^(1/2)-11)/(2*3)

n = -1 or n = -8/3

(n+8/3)*(n+1) = 0

((n+8/3)*(n+1))/(n*(n+1)*(4*n+4)) = 0

((n+8/3)*(n+1))/(n*(n+1)*(4*n+4)) = 0 // * n*(n+1)*(4*n+4)

(n+8/3)*(n+1) = 0

( n+1 )

n+1 = 0 // - 1

n = -1

( n+8/3 )

n+8/3 = 0 // - 8/3

n = -8/3

n in { -1}

n = -8/3

See similar equations:

| 3/4B-3=9 | | 5a+3=38 | | 2(z-4)=16 | | -3x-2-x-6=0 | | -7c+3=17 | | 6x+8x-76=57-5x | | 9q=4+10q | | 7x+3+4x+1=180 | | 4(-6f-10)+8= | | -8=b+4/2 | | 6X/5-x=x/15-10/3 | | -3x-2=x+6 | | 12-q=3 | | 7x-8+2x=3x+28 | | -7x+13=17 | | a^2+36= | | 5i/3+i | | 7z=8z+4 | | 8(6-5x)+4(5x+2)=5x+3x | | -6h+(-h)-17h-(-20)=-4 | | 3u+2=2u | | x(x)+2x+1=0 | | 4x=2x+14-23 | | -6+(-h)-17h-(-20)=-4 | | -7+4(1-9.5f)=-16.5 | | x(x)+2x=-1 | | 12+-(7)=-6 | | 6y-1.6x=8 | | 4x+2x=23 | | 16-5(x-3)=14 | | (1-n)-4=61/2 | | X+y-2z=5 |

Equations solver categories